Isolation and Crystallographic Characterization of $ErSc_2N@C_{80}$: an Endohedral Fullerene Which Crystallizes with Remarkable Internal Order

Marilyn M. Olmstead,[†] Ana de Bettencourt-Dias,[†] J. C. Duchamp,^{‡,§} S. Stevenson,^{‡,⊥} Harry C. Dorn,^{*,‡} and Alan L. Balch^{*,†}

Contribution from the Department of Chemistry, University of California, Davis, California 95616 and the Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Received June 5, 2000

Abstract: The $\operatorname{Er}_n \operatorname{Sc}_{3-n} \operatorname{N} \otimes \operatorname{C}_{80}$ (n = 0-3) family of four endohedral fullerenes has been prepared by vaporization of graphite rods packed with 2% $\operatorname{Sc}_2\operatorname{O}_3/3\%$ $\operatorname{Er}_2\operatorname{O}_3/95\%$ graphite powder in a Krätschmer–Huffman fullerene generator under dynamic flow of helium and dinitrogen. $\operatorname{ErSc}_2\operatorname{N} \otimes \operatorname{C}_{80}$ has been isolated in pure form via three stages of high-pressure liquid chromatography and characterized by mass spectrometry. The first structure of a mixed metal endohedral, $\operatorname{ErSc}_2\operatorname{N} \otimes \operatorname{C}_{80}$, has been determined by single-crystal X-ray diffraction at 90 K on $\operatorname{ErSc}_2\operatorname{N} \otimes \operatorname{C}_{80}^{-1}$ co $\operatorname{O}^{II}(\operatorname{OEP}) \cdot 1.5\operatorname{C}_6\operatorname{H}_6 \cdot 0.3\operatorname{CHCl}_3$, which was obtained by diffusion of a solution of $\operatorname{ErSc}_2\operatorname{N} \otimes \operatorname{C}_{80}$ consists of a planar $\operatorname{ErSc}_2\operatorname{N}$ unit surrounded by an icosahedral C_{80} cage. The nominal $\operatorname{Er}-\operatorname{N}$ distance is 2.089(9) Å and the $\operatorname{Sc}-\operatorname{N}$ distance is, as expected, shorter, 1.968(6) Å. Despite its location within the C_{80} cage, the $\operatorname{ErSc}_2\operatorname{N}$ unit displays a remarkable degree of order within the solid-state structure. The metal ions make close contact with individual carbon atoms of the cage with shortest $\operatorname{Sc}-\operatorname{C}$ distances, in the range of 2.03–2.12 Å, and shortest $\operatorname{Er}-\operatorname{C}$ distances of 2.20 and 2.22 Å. Two different, but equally populated, orientations of the I_h C_{80} cage were required to describe the fullerene portion of the structure. Although these C_{80} cages are located on a crystallographic mirror plane, that plane does not coincide with a mirror plane of the cages themselves. Consequently, the cage is disordered over four superimposed sites.

Introduction

The original recognition¹ of the unique stability of C_{60} was rapidly followed by news that metal ions could be incorporated into the central portion of fullerene cages to produce a family of endohedral fullerenes such as La@C_n.² However, progress in exploring the chemical and physical properties of the endohedral fullerenes has been slowed by three factors: the low yields in which most endohedrals are produced, the frequent low solubility of the endohedrals, and the air sensitivity of some of these species. Nevertheless, many endohedrals have been detected with one, two, or three atoms, generally electropositive metal atoms, incorporated within the carbon cages, which range in size from U@C₂₈³ to La₃@C₁₀₆ and beyond.⁴ Two recent reviews of the field are available.^{5,6}

Recently the preparation of the novel endohedral, $Sc_3N@C_{80}$, which contains the planar tetra-atomic Sc₃N unit within the fullerene cage has been reported.^{7,8} This novel endohedral is formed by conducting the normal Krätschmer-Huffman arc fullerene preparation with scandium oxide-doped graphite rods in a dynamic atmosphere that contains dinitrogen in addition to helium. This process, the trimetallic nitride template (TNT) method, produces Sc₃N@C₈₀ in an abundance which exceeds that of C₈₄, the most prevalent of the fullerenes with masses greater than C₇₀, and makes macroscopic quantities of Sc₃N@C₈₀ available for chemical and physical characterization. Sc₃N@C₈₀ has been characterized by ¹³C, ¹⁴N, and ⁴⁵Sc NMR spectroscopy, UV/vis spectroscopy, and by a single-crystal X-ray diffraction study of the cocrystallized solid, Sc₃N@C₈₀·Co^{II}-(OEP) • 0.5C₆H₆ • 1.5CHCl₃ (OEP is the dianion of octaethylporphyrin).^{9,10,11} Although the crystallographic work revealed the

[†] University of California, Davis.

[‡] Virginia Polytechnic Institute and State University.

[§] Permanent address: Emory and Henry College, Emory, Virginia, 24327-0943.

 $^{^\}perp Permanent$ address: Luna Nanomaterials, 2851 Commerce Street, Blacksburg, VA 24060.

Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.

⁽²⁾ Heath, J. R.; O'Brien, S. C.; Zhang, Q.; Liu, Y.; Curl, R. F.; Kroto,

<sup>H. W.; Tittel, F. K.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 7779.
(3) Guo, T.; Diener, M. D.; Chai, Y.; Alford, M. J.; Haufler, R. E.; McClure, S. M.; Ohno, T.; Weaver, J. H.; Scuseria, G. E.; Smalley, R. E.</sup>

 ⁽⁴⁾ Alvarez, M. M.; Gillan, E. G.; Holczer, K.; Kaner, R. B.; Min, K.

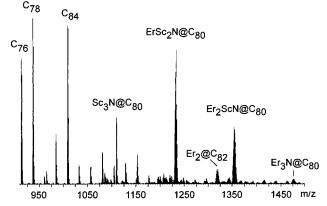
⁽⁴⁾ Alvarez, M. M., Olnan, E. G., Holczer, K., Kaher, K. B., Mill, K. S.; Whetten, R. L. J. Phys. Chem. **1991**, 95, 10561.

⁽⁵⁾ Shinohora, H. In *Fullerenes: Chemistry, Physics, and Technology*; Kadish, K. M., Ruoff, R. S., Eds. John Wiley and Sons: New York, 2000, p 357.

⁽⁶⁾ Nagase, S.; Kobayashi, K.; Akasaka, T.; Wakahara, T. In *Fullerenes: Chemistry, Physics, and Technology*; Kadish, K. M., Ruoff, R. S., Eds. John Wiley and Sons: New York, 2000, p 395.

⁽⁷⁾ Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M.; Maitra, K.; Fisher, A. J.; Balch, A. L.; Dorn, H. C. *Nature* **1999**, *401*, 55.

⁽⁸⁾ Dorn, H. C.; Stevenson, S.; Craft, J.; Cromer, F.; Duchamp, J.; Rice, G.; Glass, T.; Harich, K.; Fowler, P. W.; Heine, T.; Hajdu, E.; Bible, R.; Olmstead, M. M.; Maitra, K.; Fisher, A. J.; Balch, A. L. Proceedings of the IWEPNM2000 Conference; Kirchberg/Tyrol, Austria, March 4–10, 2000; American Institute of Physics; in press.


⁽⁹⁾ Crystallization of fullerenes is frequently accompanied by orientational disorder, which impedes detailed structural study. However, cocrystallization of fullerenes with Co^{II}(OEP) and other porphyrins produces crystals in which the fullerene frequently is ordered or sufficiently ordered to allow analysis of its structure.^{10,11}

location of the Sc_3N unit within the fullerene cage, residual electron density in the vicinity of the cage indicated that one or more alternative cage orientations were present, but this aspect of disorder was unresolved.

The empty-cage fullerenes, C_{80} along with C_{74} and C_{72} , have been considered as "missing fullerenes" because of their low abundances in raw fullerenes soot and/or in raw soot extract.¹² Seven isomeric structures of the C_{80} cage [with symmetries D_2 , D_{5d} , C_{2v} , C_{2v}' (two distinct isomers), D_3 , D_{5h} and I_h] fulfill the isolated pentagon rule.13 Theoretical calculations indicate that these idealized structures have open shell structures and are subject to Jahn–Teller effects, which lower their symmetries.¹⁴ The empty cage C_{80} isomers D_2 and D_{5d} (D_5) are nearly equal in energy and are the most stable isomers. The stability of the entire range of C₈₀ isomers decreases in the following order: D_2 and $D_{5d}(D_5) > C_{2v} > C_{2v'}(C_s) > D_3(C_3) > D_{5h}(C_s) > I_h$ (D_2) , where the lowered symmetry of the affected cages is given in parentheses. Two forms of the empty cage C₈₀ have been isolated and identified as the D_2 and D_{5d} isomers on the basis of their ¹³C NMR spectra.^{15,16}

Despite the low intrinsic abundance of C₈₀ in fullerene extracts, the formation of endohedral fullerenes by the standard Krätschmer-Huffman technique has provided access to several other C80-based endohedrals including La2@C80, Pr2@C80,17 $Ce_2@C_{80}$,¹⁸ and $M@C_{80}$ (M = Ca, Sr, Ba).¹⁹ Sufficient quantities of La2@C80 have been purified and isolated so that a number of spectroscopic,²⁰ electrochemical,²¹ and chemical properties²² of this endohedral fullerene have been explored. Electronic structure calculations have shown that the stability of the I_h of isomer of C_{80} increases markedly when six electrons are added to the cage to provide a closed-shell electronic structure.^{23,24} As a result, the I_h isomer becomes the most stable structure for $(C_{80})^{-6}$.²⁵ For La₂@C₈₀, calculations reveal that the I_h structure is favored with a formal $(La^{3+})_2(C_{80})^{6-}$ electron distribution within the molecule. The ¹³C and ¹³⁹La NMR spectra of solutions of La₂@C₈₀ have been interpreted in terms of an I_h structure for the C₈₀, with the metal atoms undergoing rapid circular motion within the carbon cage.²⁰ Similarly, the spec-

- (11) Boyd, P. D. W.; Hodgson, M. C.; Rickard, C. E. F.; Oliver, A. G.; Chaker, L.; Brothers, P. J.; Bolskar, R. D.; Tham, F. S.; Reed, C. A. J. Am. Chem. Soc. **1999**, *121*, 10487.
- (12) Wan, T. S. M.; Zhang, W.; Nakane, T.; Xu, M.; Inakume, H.; Shinohara, H.; Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. **1998**, 120, 6806.
- (13) Fowler, P. W.; Manoloupoulos D. E. An Atlas of Fullerenes. Oxford University Press: Oxford, 1995; p 254.
- (14) Kobayashi, K.; Nagase, S.; Akasaka, T. Chem. Phys. Lett.. 1995, 245, 230.
- (15) Hennrich, F. H.; Michel, R. H.; Fischer, A.; Richard-Schneider, S.; Gilb, S.; Kappes, M. M.; Fuchs, D.; Bürk, M.; Kobayashi, K.; Nagase, S.
- Angew. Chem., Int. Ed. Engl. **1996**, *35*, 1732. (16) Wang, C.-R.; Sugai, T.; Kai, T.; Tomiyama, T.; Shinohara, H. Chem.
- Commun. 2000, 557. (17) Ding, J.; Yang, S. J. Am. Chem. Soc. 1996, 118, 11254.
 - (17) Ding, J.; Yang, S. J. Am. Chem. Soc. 1990, 110, 11254.
 (18) Ding, J.; Yang, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 2234.
 - (19) Dennis, T. J. S.; Shinohara, H. *Chem. Commun.* **1998**, 883.
- (20) Akasaka, T.; Nagase, S.; Kobayashi, K.; Wälchli, M.; Yamamoto, K.; Funasaka, H.; Kako, M.; Hoshino, T.; Erata, T. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 1643.
- (21) Suzuki, T.; Maruyama, Y.; Kato, T.; Kikuchi, K.; Nakao, Y.; Achiba, Y.; Kobayashi, K.; Nagase, S. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 4, 1094.
- (22) Akasaka, T.; Nagase, S.; Kobayashi, K.; Suzuki, T.; Kato, T.; Kikuchi, K.; Achiba, Y.; Yamamoto, K.; Funasaka, H.; Takahashi, T. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 2139.
 - (23) Fowler, P. W. Chem. Phys. Lett. 1986, 131, 444.
- (24) Gillan, E. G.; Yeretzian, C.; Min, K. S.; Alvarez, M. M.; Whetten, R. L.; Kaner, R. B. J. Phys. Chem. **1992**, *96*, 6869.
- (25) Fowler, P. W.; Zerbetto, F. Chem. Phys. Lett. 1995, 243, 36.

Figure 1. Mass spectrum of the raw CS_2 extract that was utilized to obtain $ErSc_2N@C_{80}$. The intense mass clusters due to C_{60} and C_{70} are not shown.

troscopic and crystallographic data on $Sc_3N@C_{80}$ are consistent with the presence of a carbon cage with I_h symmetry for which the $(Sc^{3+})_3(N^{3-})@(C_{80}^{6-})$ electronic distribution is probable.⁷

Here we report the preparation of the $\text{Er}_n\text{Sc}_{3-n}\text{N}@\text{C}_{80}$ (n = 0-3) family of endohedrals, the isolation of $\text{ErSc}_2\text{N}@\text{C}_{80}$, and its detailed structural characterization by single-crystal X-ray diffraction.

Results and Discussion

Synthesis of the $\mathrm{Er}_n\mathrm{Sc}_{3-n}\mathrm{N}@\mathrm{C}_{80}$ (n = 0-3) Family and Isolation and Characterization of ErSc₂N@C₈₀. Vaporization of graphite rods packed with 2% $Sc_2O_3/3\%$ Er₂O₃/95% graphite powder (with cobalt^{II} oxide as a catalyst) in a Krätschmer-Huffman fullerene generator under dynamic flow of helium and dinitrogen produces a black soot. Extraction of this raw soot with cold carbon disulfide produces a reddish-orange solution of soluble empty cage and metal encapsulated fullerenes. A portion of the mass spectrum obtained from the material in the carbon disulfide extract is shown in Figure 1. Mass clusters arising from the presence of the $Er_nSc_{3-n}N@C_{80}$ family are present in the following order of decreasing abundance: Er- $Sc_2N@C_{80} > Er_2ScN@C_{80} > Sc_3N@C_{80} > Er_3N@C_{80}$. In addition, the customary peaks due to $C_{76},\,C_{78},\,and\,C_{84}$ are seen along with those of Er₂@C₈₂. The intense features coming from the more abundant C_{60} and C_{70} molecules are not shown.

ErSc₂N@C₈₀ was isolated from the raw soot and purified via three stages of high-pressure liquid chromatography (HPLC). The first stage utilized a pentabromobenzyl column with carbon disulfide as eluant and an automated HPLC procedure that has been outlined previously.26 The C84-C88 fraction from the pentabromobenzyl column was then collected and further separated using a Buckyclutcher column with a toluene mobile phase. To remove coeluting impurities in this fraction, a third round of HPLC utilized a Buckyprep column with toluene as eluant. The final HPLC trace is shown in Figure 2, along with the mass spectrum obtained from this sample. ErSc₂N@C₈₀ forms reddish-brown solutions in carbon disulfide and benzene which are stable to air. Although the overall yield of $ErSc_2N@C_{80}$ represents 3-5% of the total soluble extract (see Figure 1), it is very difficult to remove the TNT endohedral metallofullerenes (Er₃N@C₈₀ and ScEr₂@C₈₀) impurities because of chromatographic coelution with very similar elution times on the Buckyprep column. Nevertheless, from 10 packed graphite rods, 150 mg of soluble extract was obtained and 1-2 mg of purified ErSc₂N@C₈₀ was recovered.

⁽¹⁰⁾ Olmstead, M. M.; Costa, D. A.; Maitra, K.; Noll, B. C.; Phillips, S. L.; Van Calcar, P. M.; Balch, A. L. J. Am. Chem. Soc. **1999**, *121*, 7090.

⁽²⁶⁾ Stevenson, S.; Dorn, H. C.; Burbank, P.; Harich, K.; Anal. Chem. 1994, 66, 2675.

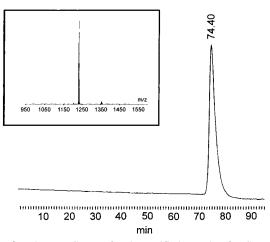
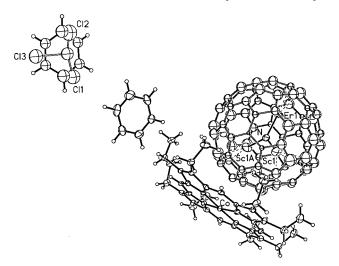



Figure 2. The HPLC trace for the purified sample of $\text{ErSc}_2\text{N}@\text{C}_{80}$ utilized in this work. The insert shows the mass spectrum of this sample.

Figure 3. Perspective view of the independent molecules and their relative orientations within crystalline $\text{ErSc}_2\text{N}@\text{C}_{80}\cdot\text{Co}^{II}(\text{OEP})\cdot 1.5\text{C}_6\text{H}_6\cdot$ 0.3CHCl₃ with 50% thermal contours for all non-hydrogen atoms. Only one orientation of the C₈₀ cage is shown. The site on the left is partially occupied by chloroform and benzene, which are shown superimposed.

Crystallization and Structural Analysis of ErSc₂N@C₈₀· Co^{II}(OEP)·1.5C₆H₆·0.3CHCl₃. Because the sample of ErSc₂-N@C₈₀ itself did not appear to form X-ray diffraction quality crystals, cocrystallization with Co^{II}(OEP)^{9,10} was attempted and found to yield a suitable material: ErSc₂N@C₈₀·Co^{II}(OEP)· 1.5C_6H_6·0.3CHCl₃. Figure 3 shows the individual molecular components of the solid and their relative orientations. The solid consists of five independent molecules that occupy four sites. One site, which is shown in the upper left of Figure 3, is fractionally occupied by a molecule of benzene and a molecule of chloroform. Figure 4 shows a stereo diagram that illustrates the molecular packing within the solid.

ErSc₂N@C₈₀. The ErSc₂N@C₈₀ molecule sits at a site of crystallographic mirror symmetry. However, the C₈₀ cage itself is orientationally disordered, and none of the 15 mirror planes of any one of the icosahedral cages coincides with the crystallographic mirror plane.^{27,28} Figure 5 presents a stereo drawing which shows the two orientations of the cages

superimposed upon one another. Because of this disorder in the cage, it was necessary to refine it as a rigid group using idealized coordinates. In this model, the C–C bond distances at 6:6 ring junctions are held at 1.4263 Å, while the C–C bond distances at 6:5 ring junctions are 1.4276 Å. This model produces a C₈₀ cage with an 8.19-Å diameter between carbon atoms at the junction of two six-membered rings and one five-membered ring and an 8.133-Å diameter between carbon atoms that join three six-membered rings. Because the C₈₀ cage was disordered and treated as a rigid group, it was not possible to determine whether the incorporation and localization of the ErSc₂N unit within the cage produced any distortion of the cage.

Figure 6 presents information about the ErSc₂N group and its relationship to the cage around it. Part a shows the ErSc₂N group alone. The N and Er atoms lie on a crystallographic mirror plane. The nominal Er-N distance is 2.089(9) Å and the Sc-N distance is, as expected, shorter, 1.968(6) Å. The Er–N–Sc angle is $119.1(3)^{\circ}$ and the Sc-N-Sc angle is $121.3(6)^{\circ}$. The ErSc₂N unit is planar within experimental error, with the sum of the two Er-N-Sc angles and the Sc-N-Sc angle equal to 359.6°. The Er and Sc thermal ellipsoids are elongated in directions which are indicative of motion of the ErSc₂N group along the walls of the C₈₀ cage. RMS analysis of the thermal motion compensates for this distortion and indicates that the range for the Er–N bond length is 2.09–2.20 Å, and the range for the Sc-N bond length is 1.97-2.06 Å.²⁹ The nominal nonbonded Sc···Sc and Sc···Er distances are 3.50 and 3.43 Å, respectively.

Parts b and c of Figure 6 show the relationships between the ErSc₂N group and the C₈₀ cage surrounding it. Because there are two orientations of the C₈₀ cage within the crystal, there are also two slightly different molecules of ErSc₂N@C₈₀ produced by coupling these cage orientations with the ErSc₂N portion. These molecules differ in regard to the interactions of the metal ions with the cage. Figures 7 and 8 show projections of the metal ions onto the inner surface of the C80 cages of the two distinct molecules. As it is seen in these drawings, each metal ion resides close to a single carbon atom of the cage, with Sc-C distances in the range 2.03-2.12 Å and Er-C distances of 2.20 and 2.22 Å. In molecule 1, shown in Figure 7, all of the metal atoms reside near carbon atoms that are located at the intersection of two hexagons and one pentagon. In molecule 2, as shown in Figure 8, the Er atom and one of the Sc atoms also lie over carbon atoms that are located at the intersection of two hexagons and one pentagon, but the other Sc atom lies over a carbon atom that resides at the intersection of three hexagons. Thus, the arrangement of scandium ions over carbon atoms is statistical. Within the icosahedral C₈₀ cage, there are 60 carbon atoms that reside at the intersection of two hexagons and one pentagon, but there are only 20 carbon atoms that reside at the intersection of three hexagons.

In addition to the major site for the ErSc₂N group discussed above, examination of difference electron density maps during refinement indicated that there were other, less populated sites for the ErSc₂N group within the C₈₀ cage. The ErSc₂N group shown in Figure 6 has a fractional occupancy of 0.80. In addition there are three sites of electron density, one on the crystallographic mirror plane, the others in general positions, which have been assigned to erbium atoms. Three other sites of lesser electron density in general positions within the cage have been assigned as scandium atoms. All of these sites are roughly 1.9– 2.1 Å from the central nitrogen atom and are close to the

⁽²⁷⁾ Other cases in which the fullerene does not utilize the crystallographic site symmetry are known. For example, in C_{60} •5Ag(NO₃) the C_{60} cage resides at a site of mm symmetry but is disordered over four orientations.

⁽²⁸⁾ Olmstead, M. M.; Maitra, K.; Balch, A. L. Angew. Chem., Int. Ed. Engl. 1999, 38, 231.

⁽²⁹⁾ Johnson, C. K. Crystallographic Computing; Munksgaard: Copenhagen, 1970; p. 220.

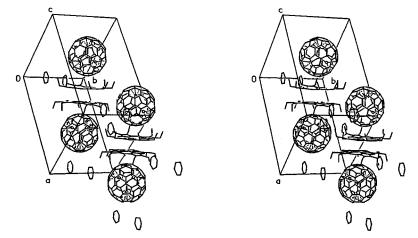


Figure 4. View of unit cell of $\text{ErSc}_2N@C_{80}$ ·Co^{II}(OEP)·1.5C₆H₆·0.3CHCl₃ which shows crystallographic packing of the components. Only one orientation of the C₈₀ cage is shown, and the disordered chloroform is not shown.

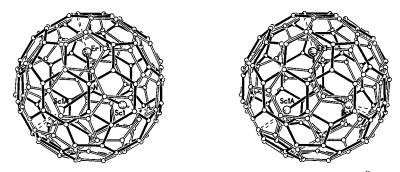


Figure 5. Drawing which shows a superposition of the two orientations of the C_{80} cage in $ErSc_2N@C_{80}$ · $Co^{II}(OEP)$ · $1.5C_6H_6$ · $0.3CHCl_3$. One cage is shown with a solid line connecting the carbon atoms (small circles); the other cage orientation has open lines connecting the carbon atoms.

fullerene cage. All can be assembled into planar $ErSc_2N$ units that resemble the $ErSc_2N$ unit shown in Figure 6, but each of these has a different orientation within the cage (see supporting information).

Co^{II}(OEP) and Its Interaction with ErSc₂N@C₈₀ and Itself. The Co^{II}(OEP) molecule resides on a crystallographic mirror plane which coincides with a molecular mirror plane that bisects the cobalt atom, N(1), and N(3). The geometry of the Co^{II}(OEP) molecule is entirely normal. The Co–N distances [Co–N(1), 1.969(8); Co–N(2), 1.985(6); and Co–N(3), 1.976-(7) Å] in ErSc₂N@C₈₀·Co^{II}(OEP)·1.5C₆H₆·0.3CHCl₃ are similar to those in Co^{II}(OEP) [Co–N, 1.967(3), 1.975(2) Å],³⁰ in C₆₀· $2Co^{II}(OEP)$ ·CHCl₃ [Co–N, 1.954(5)–1.985(6) Å], and in C₇₀· Co^{II}(OEP)·C₆H₆·CHCl₃ [Co–N, 1.964(5)–1.967(5) Å].¹⁰

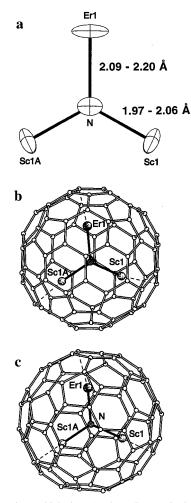
The Co^{II}(OEP) molecule is positioned so that the ethyl groups of the porphyrin form an octapoidal embrace about the fullerene and the porphyrin plane is adjacent to the C₈₀ cage. The fullerene is too far from the cobalt atoms for any normal covalent bonding between them. The closest approaches of the cobalt atom to the C₈₀ cage involves C(9B), which is 2.706 Å from the cobalt atom, and C(78A), which is 2.746 Å from the cobalt atom. Although these distances are too long to represent true η^2 coordination,³¹ they are shorter than the normal van der Waals contact seen between graphite layers (3.4 Å),³² between adjacent porphyrins (3.2 Å and larger),³³ and between neighboring fullerenes (>3.2 Å).^{34,35} The shorter Fe–C₆₀ contact (Fe–C distance, 2.63 Å) in $[Fe(TTP)(C_{60})]^+$ has been described as having a covalent Fe–C interaction that is somewhat different from symmetrical η^2 -bonding.³⁶

In addition to these fullerene-porphyrin interactions, there are significant porphyrin-porphyrin contacts with pairwise, face-to-face contact. As is the case with C₆₀•2Co^{II}(OEP)•CHCl₃ and with C_{70} ·Co^{II}(OEP)·C₆H₆·CHCl₃, the face-to-face porphyrin-porphyrin contact is greater in the fullerene cocrystals than it is in pristine Co^{II}(OEP) itself. Thus, the lateral shift (LS, 1.534 Å), mean plane separation (MPS, 2.994 Å), and the Co···Co separation (3.364 Å) in $\text{ErSc}_2\text{N}@\text{C}_{80}\text{\cdot}\text{Co}^{\text{II}}(\text{OEP})\text{\cdot}1.5\text{C}_6\text{H}_6\text{\cdot}$ 0.3CHCl₃ are shorter than the corresponding distances in Co^{II}-(OEP) (LS, 3.38 Å; MPS, 3.33 Å, Co···Co separation, 4.742 Å) but are similar to those in $C_{70} \cdot Co^{II}(OEP) \cdot C_6H_6 \cdot CHCl_3$ (with LS, 1.67 Å; MPS, 3.19 Å, Co···Co separation, 3.392 Å). This close face-to-face arrangement in ErSc₂N@C₈₀·Co^{II}(OEP)· 1.5C₆H₆•0.3CHCl₃ is facilitated by the positioning of all of the ethyl groups on the opposite side of the porphyrin plane from the adjacent Co^{II}(OEP) molecule. In contrast, Co^{II}(OEP) alone has four ethyl groups on one side of the porphyrin plane and four on the opposite side.³⁰

Discussion

The TNT approach has been successfully utilized to prepare the set of four endohedrals, $\text{Er}_n\text{Sc}_{3-n}\text{N}@\text{C}_{80}$ (n = 0-3). In the process described here, the raw soot that was obtained is particularly rich in the mixed metal species, $\text{ErSc}_2\text{N}@\text{C}_{80}$, which has been separated and isolated in pure form.

⁽³⁰⁾ Scheidt, W. R.; Turowska-Tyrk, I. *Inorg. Chem.* **1994**, *33*, 1314.
(31) Balch, A. L.; Olmstead, M. M. *Chem. Rev.* **1998**, *98*, 2123.
(32) Pauling, L. *The Nature of the Chemical Band*. 3rd ed.: Corpell


⁽³²⁾ Pauling, L. *The Nature of the Chemical Bond*, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 260.

⁽³³⁾ Scheidt, W. R.; Lee, Y. J. *Struct. Bonding (Berlin)* **1987**, *64*, 1. (34) Bürgi, H. B.; Restori, R.; Schwarzenbach, D.; Balch, A. L.; Lee, J.

W.; Noll, B. C.; Olmstead, M. M. Chem. Mater. **1994**, 6, 1325.

⁽³⁵⁾ Balch, A. L.; Lee, J. W.; Noll, B. C.; Olmstead, M. M. J. Chem. Soc., Chem. Commun. 1993, 56.

⁽³⁶⁾ Evans, D. R.; Fackler, N. L. P.; Xie, Z.; Rickard, C. E. F.; Oliver, A. G.; Chaker, L.; Brothers, P. J.; Bolskar, R. D.; Boyd, P. D. W.; Reed, C. A. J. Am. Chem. Soc. **1999**, *121*, 8466.

Figure 6. Drawings which show (a) the ErSc_2N unit alone with thermal elipsoids, and b and c, the two molecules of $\text{ErSc}_2N@C_{80}$ (without thermal elipsoids) which arise due to the cage disorder. In b and c, the dashed lines connect the metal ions to the nearest carbon atoms.

The crystallographic data indicate that the ErSc₂N unit is tightly packed within the C₈₀ cage, because the Sc-N and Er-N distances, along with the shortest Sc-C and Er-C distances, are all shorter than the shortest comparable bond lengths in other compounds that these metal ions form. Moreover, these distances are (>0.25 Å) shorter than comparable mean bond lengths given in the Cambridge Structural Data Base (CSD).37 The nominal Sc-N distance in ErSc₂N@C₈₀ is 1.968(6) Å, but a search of the CSD reveals that the mean Sc-N distance is 2.251 Å in 82 observed examples and that the previous shortest Sc-N distance was 2.039 Å (for dichloro-bis(tetrahydrofuran)-bis(trimethylsilyl)amido-scandium).³⁸ Other relevant comparisons include tris(bis(dimethylsilyl)amido)(tetrahydrofuran)-scandium with Sc-N distances of 2.063(2), 2.064(2), and 2.079(2) Å³⁹ and $(\eta^{5}$ -cyclopentadienyl)(octaethylporphyrin)scandium with an average Sc-N distance of 2.190(2) Å.40 Similarly, the nominal Er-N distance in $ErSc_2N@C_{80}$ is 2.089(9) Å, but the mean Er-N distance in the CSD is 2.411 Å in 128 observed examples, and the previous shortest Er-N distance was 2.151 Å (for bis- $(\mu_2$ -triphenylphosphineiminato)-tris $(\eta^5$ -cyclopentadienyl)-(tri-

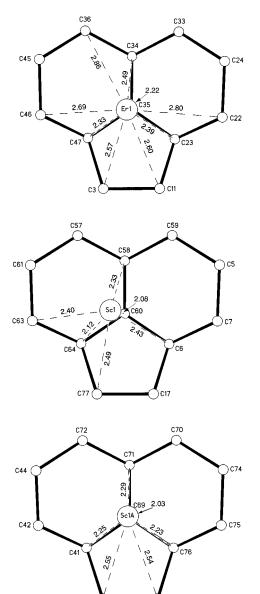


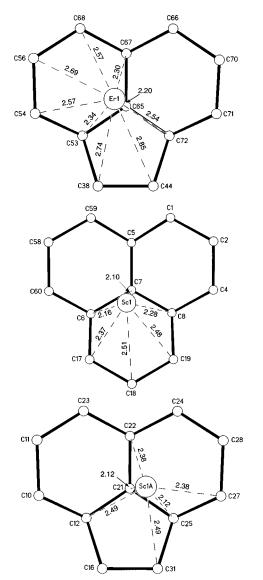
Figure 7. Projections which show the positions of the metal ions with respect to the adjacent walls of the C_{80} cage for one orientation of the cage (molecule 1).

phenylphosphineiminato)-di-erbium).⁴¹ In a particularly relevant comparison, the average Er–N distance in [tetrakis(tetrahydro-furan)lithium]-[tetrakis(diphenylamido)erbium] is 2.26 Å.⁴² Similar considerations pertain to the shortest Sc–C and Er–C distances inside the cage. Thus, the shortest Sc–C distances in ErSc₂N@C₈₀ range from 2.029 to 2.121 Å, but the mean Sc–C distance is 2.430 Å in 73 examples in the CSD, and the shortest Sc–C distance in the CSD is 2.204 Å for the σ -Sc–C bond in bis(trimethylsilylmethyl-)-*N*,*N*-bis(di-isopropylphosphinomethyl-dimethylsilylamido)-scandium.⁴³ In other relevant examples, the average Sc–C distance in (η^{5} -cyclopentadienyl)(octaethylporphyrin)scandium is 2.494(4) Å,³⁹ and the average Sc–C distance in di-(μ -chloro)-bis(di-(η^{5} -cyclopentadienyl)scandium) is 2.46 Å.⁴⁴ Similarly, the shortest Er–C distances in ErSc₂N@C₈₀ are

⁽³⁷⁾ Allen, F. H.; Davies, J. E.; Johnson, O. J.; Kennard, O.; Macrae, C. F.; Mitchell, E. M.; Mitchell, G. F.; Smith, J. M.; Watson, D. J. Chem. Inf. Comput. Sci. **1991**, 31, 187.

⁽³⁸⁾ Karl, K.; Sybert, G.; Massa, W.; Dehnicke, K. Z. Anorg. Allg. Chem. 1999, 625, 375.

⁽³⁹⁾ Anwander, R.; Runte, O.; Eppinger, J.; Gerstberger, G.; Herdtweck, E.; Spiegler, M. J. Chem. Soc., Dalton Trans. **1998**, 847.


⁽⁴⁰⁾ Arnold, J.; Hoffman, C. G. J. Am. Chem. Soc. 1990, 112, 8620.

⁽⁴¹⁾ Anfang, S.; Harms, K.; Weller, F.; Borgmeier, O.; Lueken, H.; Schilder, H.; Dehnicke, K. Z. Anorg. Allg. Chem. **1998**, 624, 159.

⁽⁴²⁾ Wong, W.-K.; Zhang, L.; Xue, F.; Mak, T. C. W. Polyhedron, 1997, 16, 2013.

⁽⁴³⁾ Fryzuk, M. D.; Giesbrecht, G.; Rettig, S. J. Organometallics, 1996, 15, 3329.

⁽⁴⁴⁾ Atwood, J. L.; Smith, K. D. J. Chem. Soc., Dalton Trans. 1973, 2487.

Figure 8. Projections which show the positions of the metal ions with respect to the adjacent walls of the C_{80} cage for the other orientation of the cage (molecule 2).

2.195 and 2.215 Å, but the mean Er–C distance in the CSD is 2.769 Å, and the shortest Er–C distance is 2.412 Å (in triphenyltris(tetrahydrofuran)-erbium),⁴⁵ and for comparison, the average Er–C distance in di- μ -chloro-bis(di-(η^5 -cyclopentadienyl)erbium) is 2.59 Å.⁴⁶ In considering the comparison of these M–C distances, it is important to realize that the orientation of the M–C unit in ErSc₂N@C₈₀ differs significantly from that in conventional π -bonded ligands, such as η^5 -cyclopentadienyl groups. In ErSc₂N@C₈₀, the metals reside near single carbon atoms, whereas in (η^5 -C₅H₅) complexes, which are particularly numerous in the CSD, the metal is centered over the cyclopentadienide ring, and consequently for such compounds the M–C distances are naturally longer than they would be if the metal were located directly over a single carbon atom.

The positions of the scandium atoms within the fullerene cage in $\text{ErSc}_2\text{N}@\text{C}_{80}$ can also be compared to structural information obtained from theoretical calculations and from the analysis of X-ray powder diffraction data on related scandium endohedral

complexes. Ab initio molecular orbital and density functional calculations have placed the Sc atoms 2.358 Å from the nearest carbon atoms in $\hat{Sc_2}@C_{84}$ ⁴⁷ and 2.322 Å from the closest carbon atoms in $Sc_2@C_{80}$.⁴⁸ These are longer distances than those observed in ErSc₂N@C₈₀. However, fewer atoms are present in the interior of Sc₂@C₈₄ and Sc₂@C₈₀ than in ErSc₂N@C₈₀. Room temperature X-ray powder diffraction data have been analyzed for Sc3@C82 by a combination of Rietveld and maximum entropy method (MEM) methods.⁴⁹ The results produced a model in which an equilateral triangle of scandium atoms with a Sc···Sc distance of 2.3(3) Å resides within a C_{82} cage having C_{3v} symmetry and with the Sc atom 2.52(2) Å from the closest carbon atom of the C82 cage. A similar analysis of X-ray powder diffraction data for Sc₂@C₈₄ indicated that the Sc···Sc distance is 3.9(1) Å and that the shortest Sc···C contact is 2.4(2) Å.⁵⁰ Again the Sc···C contacts observed in ErSc₂N@C₈₀ are shorter.

Bonding within ErSc₂N@C₈₀ can be considered to consist of four components. First, there is the covalent C-C bonding that forms the cage itself. This cage then mechanically entraps the ErSc₂N unit. In addition to the mechanochemical encapsulation, there is a strong ionic component to the bonding in the endohedral. The ErSc₂N@C₈₀ molecule can be thought in formal terms to consist of three concentric rings of charge starting with the core nitride (N^{3-}) , which is surrounded by three M^{3+} ions, which are then encapsulated by the $(C_{80})^{6-}$ cage. This formal charge distribution utilizes the characteristic M³⁺ oxidation state for both scandium and erbium and places a 6- charge on the C_{80} cage. These added electrons on the fullerene uniquely stabilize the I_h symmetry cage structure relative to the six other isomeric C_{80} cage geometries, as noted earlier.^{23,24} Given the close contacts inside the cage, there is no doubt significant orbital overlap that leads to covalent interactions among the components and to sharing of electron density so that the effective charges on the individual components are reduced below those given by the formal ionic model.

Although the ErSc₂N unit is firmly ensconced within the fullerene cage, it is also likely to be able to ratchet around inside the cage. The nature of the thermal ellipsoids shown in part A of Figure 7 is suggestive of such motion. The observation of additional, less populated sites of electron density within the cage also indicates that there are alternative locations for the group and again suggests that this group is able to move within the fullerene cage. The mobility of atoms within fullerenes cages has been suggested previously from NMR studies on La₂@C₈₀,²⁰ Sc₃N@C₈₀,⁷ Sc₂@C₈₄,⁵¹ and from EPR studies on Sc₃@C₈₂.^{52,53,54}

Crystals of $ErSc_2N@C_{80}$ ·Co^{II}(OEP)·1.5C₆H₆·0.3CHCl₃ and $Sc_3N@C_{80}$ ·Co^{II}(OEP)·0.5C₆H₆·1.5CHCl₃ are isomorphic. Although they differ in the content of cocrystallized solvent molecules, they have very similar arrangements of the fullerene and cobalt porphyrin components. It is remarkable that the

(53) Shinohara, H.; Inakuma, M.; Hayashi, N.; Sato, H.; Saito, Y.; Kato, T.; Bandow, S.; J. Phys. Chem. **1994**, 98, 8598.

(54) Kato, T.; Bandow, S.; Inakuma, M.; Shinohara, H. J. Phys. Chem. 1995, 99, 856.

⁽⁴⁵⁾ Bochkarov, L. N.; Stepantseva, T. A.; Zakharov, L. N.; Fukin, G.
K.; Yanovsky, A. I.; Struchkov, Yu. T. Organometallics 1995, 14, 2127.
(46) Lamberts, W.; Lueken, H.; Hessner, B. Inorg. Chem. Acta 1987, 134, 155.

⁽⁴⁷⁾ Kobayashi, K.; Nagase, S.; Akasaka, T. Chem. Phys. Lett. 1996, 261, 502.

⁽⁴⁸⁾ Kobayashi, K.; Nagase, S. Chem. Phys. Lett. 1996, 262, 227.

⁽⁴⁹⁾ Takata, M.; Nishibori, E.; Sakata, M.; Inakuma, M.; Yamamoto, E.; Shinohara, H. *Phys. Rev. Lett.* **1999**, *83*, 2214.

⁽⁵⁰⁾ Nishibori, E.; Takata, M.; Sakata, M.; Shinohara, H. J. Synchrotron Radiat. 1998, 5, 977.

⁽⁵¹⁾ Miyake, Y.; Suzuki, S.; Kojima, K.; Kikuchi, K.; Kobayashi, K.; Nagase, S.; Kainosho, M.; Achiba, Y.; Maniwa, Y.; Fisher, K. *J. Phys. Chem.* **1996**, *100*, 9579.

⁽⁵²⁾ van Loosdrecht, P. H. M.; Johnson, R. D.; de Vries, M. S.; Kiang, C.-H.; Bethune, D. S.; Dorn, H. C.; Burbank, P.; Stevenson, S. *Phys. Rev. Lett.* **1994**, *73*, 3415.

ErSc₂N portion within ErSc₂N@C₈₀•Co^{II}(OEP)•1.5C₆H₆•0.3CHCl₃ shows the high degree of order that it does with the erbium atom localized largely on one site, a site on the crystallographic mirror plane and furthest from the cobalt atom of the porphyrin. A random distribution of the erbium ion over all three prominent metal ion sites within the C₈₀ cage seemed probable at the outset of this project, but a much higher degree of localization is observed. The most likely factor that contributes to ordering the ErSc₂N unit within the fullerene with respect to the solidstate environment outside the fullerene is the dipole moment that is created by the asymmetric ErSc₂N unit itself. The differences in electronegativity of scandium and erbium, the differences in their sizes and in the Sc–N and Er–N distances all contribute to creating this dipole.

Resolution of the disorder in the location of the C_{80} cage in $ErSc_2N@C_{80} \cdot Co^{II}(OEP) \cdot 1.5C_6H_6 \cdot 0.3CHCl_3$ is particularly significant. The earlier structural work on $Sc_3N@C_{80} \cdot Co^{II}(OEP) \cdot 0.5C_6H_6 \cdot 1.5CHCl_3$ noted that there was an unresolved issue of residual electron density in the region of the C_{80} cage.⁷ At the time, this electron density suggested disorder in the orientations of the C_{80} cage, but the disorder could not be effectively modeled. However, when the disordered model used in the refinement of the $ErSc_2N@C_{80} \cdot Co^{II}(OEP) \cdot 1.5C_6H_6 \cdot 0.3CHCl_3$ structure is utilized in the refinement of the $Sc_3N@C_{80} \cdot Co^{II} - (OEP) \cdot 0.5C_6H_6 \cdot 1.5CHCl_3$ structure, the *R* factor of the latter structure drops by ca. 2%, which suggests that a similar form of disorder is present in the location of the $Sc_3N@C_{80}$ molecule in that crystalline environment.

The I_h fullerene cage of C_{80} differs significantly from that of other fullerenes that have been subject to chemical and structural characterization, because the icosahedral isomer of C_{80} lacks any pyracylene region (Stone–Wales patch)⁵⁵ in which a 6:6 ring junction is abutted by two pentagons. In icosahedral C_{80} , the 6:6 ring junctions are abutted by a hexagon and a pentagon. As a consequence, the I_h isomer of C_{80} lacks the sites that are most chemically reactive in other fullerenes, and it is likely to display distinctive chemical behavior. Similarly, the placement of the metal atoms within the I_h cage of C_{80} , as seen in Figures 7 and 8, may not be found in other endohedral fullerenes where pyracylene patches are present.

Experimental Section

Production of ErSc₂N@C₈₀. Graphite rods (0.25 diameter, 6 in. length) were core-drilled and subsequently packed with 180 mg cobalt oxide in a mixture of 1.0 g of graphite powder, 0.49 g of Sc₂O₃, 2.0 g of Er₂O₃ per 3.2 g of hollowed graphite rod. These rods were then vaporized in a Krätschmer–Huffman-type fullerene generator under dynamic flow of He (1250 mL/min) and N₂ (22 mL/min) to obtain samples containing ErSc₂N@C₈₀. The resulting soot from this TNT approach^{7,8} was then cold-extracted using carbon disulfide to obtain the initial endohedral extract. An NI-DCI mass spectrum of a typical ErSc stock solution is shown in Figure 1.

Separation of ErSc₂N@C₈₀. The ErSc stock solution was separated using a 3-stage HPLC approach. First, this initial extract was separated on the pentabromobenzyl, PBB, column (25 cm \times 10 mm, Phenomenex Co., Torrance, CA) with CS₂ as the mobile phase. For this stage, an automated approach was utilized.²⁶ The C₈₄–C₈₈ fraction from this PBB

column was then collected and further separated with a Buckyclutcher column (25 cm \times 10 mm, Regis Chemical, Morton Grove, IL) using toluene as a mobile phase. Upon re-injection of the ErSc₂N@C₈₀ fraction, a single homogeneous peak was obtained. Due to coeluting impurities of this ErSc₂N@C₈₀ fraction, a third column (Buckyprep, 25 cm \times 10 mm, Phenomenex Co., Torrence, CA) had to be employed. By using this Buckyprep column with toluene as the eluant, a final sample of purified ErSc₂N@C₈₀ was obtained. Its negative-ion mass spectrum and final HPLC trace are shown in Figure 2.

Crystal Growth for ErSc₂N@C₈₀·Co^{II}(OEP)·1.5C₆H₆·0.3CHCl₃: Crystals of ErSc₂N@C₈₀·Co^{II}(OEP)·1.5C₆H₆·0.3CHCl₃ were obtained by layering an orange-red solution of ca. 0.5 mg of ErSc₂N@C₈₀ in 0.5 mL of benzene over a red solution of 2.5 mg of Co^{II}(OEP) in 1.5 mL of chloroform. After we allowed the two solutions to diffuse together over a five day period, black crystals formed.

X-ray Data Collection for ErSc₂N@C₈₀·Co^{II}(OEP)·1.5C₆H₆· 0.3CHCl₃: The crystals were removed from the glass tube, together with a small amount of mother liquor and immediately coated with a hydrocarbon oil on the microscope slide. A suitable crystal was mounted on a glass fiber with silicone grease and placed in the cold stream of a Bruker SMART CCD with graphite monochromated Mo K\alpha radiation at 90(2) K. No decay was observed in 50 duplicate frames at the end of the data collection. Crystal data for ErSc₂N@C₈₀•Co^{II}(OEP)•1.5C₆H₆• 0.3CHCl₃, fw = 1976.34, black parallelepiped, $0.11 \times 0.03 \times 0.02$ mm, monoclinic, space group C2/m, a = 25.180(2), b = 15.0633(13), c = 19.650(2) Å, $\beta = 94.791(2)^{\circ}$, V = 7427.1(12) Å³, $\lambda = 0.71073$ Å, $Z = 4, D_c = 1.767 \text{ Mg m}^{-3}; \mu(\text{Mo K}\alpha) = 1.616 \text{ mm}^{-1}; 2\Theta_{\text{max}} = 25.00^{\circ};$ T = 90(2) K; 34988 refl. collected; 6819 independent ($R_{int} = 0.143$) included in the refinement; no absorption correction performed; programs used for solution and refinement, SHELXS-97, Sheldrick, 1990; full-matrix least-squares based on F^2 , SHELXL-97; Sheldrick, 1998; 455 parameters, 250 restraints, R_1 = 0.1515, wR₂=0.263 for all data; $R_1 = 0.087$ computed for 3721 observed data (>2 σ (I)).

The structure was solved by Patterson and difference Fourier methods. Hydrogen atoms were added geometrically and refined using a riding model. The major ErSc_2N unit, the non-hydrogen atoms of the $\text{Co}^{II}(\text{OEP})$ unit, and the carbon atoms of the benzene molecule with 0.50 occupancy were refined using anisotropic thermal parameters. The carbon atoms of the C_{80} cages were refined as a rigid group utilizing ideal coordinates with I_h symmetry and free isotropic thermal parameters.

Note Added in Proof. The structure of $Sc_3N@C_{78}$ shows the Sc atoms located at the midpoints of the two carbon atoms at the center of pyracylene patches. Olmstead, M. M.; de Bettencourt-Dias, A.; Duchamp, J. C.; Stevenson, S.; Marciu, D.; Dorn, H. C.; Balch, A. L. *Angew. Chem. Int. Ed., Engl.*, in press.

Acknowledgment. This article is dedicated to Prof. Fred Wudl on the occasion of this 60th birthday. We thank the National Science Foundation (Grants CHE 9610507 and CHE 0070291 to A.L.B.) and LUNA Innovations (to H.C.D.) for support, the Gulbenkian Foundation for a postdoctoral fellowship for A.dB.-D., and Professor R. L. DeKock and Dr. A. Tamulis for useful information. The Bruker SMART 1000 diffractometer was funded in part by NSF Instrumentation grant CHE-9808259.

Supporting Information Available: X-ray crystallographic files in CIF format for $ErSc_2N@C_{80} \cdot Co^{II}(OEP) \cdot 1.5C_6H_6 \cdot 0.3CHCl_3$. This material is available free of charge via the Internet at http://pubs.acs.org.

JA001984V

⁽⁵⁵⁾ Stone, A. J.; Wales, D. J. Chem. Phys. Lett. 1986, 128, 501.